

Esteban Maldonado Quispe

Análise Dinâmica de um Aterro Reforçado com Geossintéticos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de concentração: Geotecnia

Orientador: Celso Romanel

Rio de Janeiro, 01 de Agosto de 2008

Esteban Maldonado Quispe

Análise Dinâmica de um Aterro Reforçado com Geossintéticos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Celso Romanel** Orientador Departamento de Engenharia Civil - PUC-Rio

> João Luis Pascal Roehl Departamento de Engenharia Civil - PUC-Rio

> Michéle Dal Toé Casagrande Departamento de Engenharia Civil - PUC-Rio

> > José Eugênio Leal Coordenador Setorial do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 01 de Agosto de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Esteban Maldonado Quispe

Graduou-se em Engenharia Minas em 1991 pela Universidad Nacional del Centro del Peru (UNCP) e em Engenharia Civil em 2002 pela Universidad Peruana Los Andes (UPLA). Ingressou em 2006 no curso de Mestrado em Engenharia Civil da Pontifícia Universidade Católica de Rio de Janeiro, na área de Geotecnia, onde desenvolveu dissertação de mestrado na linha de pesquisa em geomecânica computacional.

Ficha Catalográfica
Maldonado Quispe, Esteban
Análise dinâmica de um aterro reforçado com geossintéticos / Esteban Maldonado Quispe; orientador: Celso Romanel. – Rio de Janeiro, PUC, Departamento de Engenharia Civil, 2008.
v.,134 f. : il. ; 29.7 cm.
Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.
Inclui referências bibliográficas.
 Engenharia civil – Tese. 2. Geossintéticos. 3. Análise numérica. 4. Aterro. 5. Solo reforçado. 6. Análise dinâmica. I. Romanel, Celso. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

PUC-Rio - Certificação Digital Nº 0611833/CA

CDD: 624

Agradecimentos

A Deus, por conduzir-me por caminhos de sabedoria e com Sua benção.

Aos meus queridos irmãos, Celestino, Pablo, Guillermo e Martha, pelo amor e apoio moral mesmo à distância.

À memória de meus pais que sempre estão em minha mente e no meu coração.

Ao Professor Celso Romanel, por sua orientação, paciência e conhecimentos transmitidos durante a elaboração deste trabalho, meus mais sinceros agradecimentos.

A meus professores Mohamed Mehdi Hadi (UPLA-Perú) e Orison Delzo Salomé (UNCP-Perú) por seu apoio moral para tornar este mestrado realidade.

À Paola Regina e Vivian Rodrigues Marchesi pelas respostas às minhas questões e pela amizade brindada.

Ao Denys Parra, por seu apoio na elaboração deste trabalho.

Aos meus amigos e colegas da PUC-Rio, pelo carinho e amizade.

Aos funcionários e a todos os professores do Departamento de Engenharia Civil da PUC-Rio.

À Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) por dar-me a valiosa oportunidade de ter sido aluno desta grande instituição.

Ao CNPq e À CAPES pela concessão da bolsa de estudos que me possibilitou o suporte financeiro durante minha estada no Brasil.

Resumo

Maldonado, Esteban Quispe. Romanel, Celso (Orientador). Análise Dinâmica de um Aterro Reforçado com Geossintéticos. Rio de Janeiro, 2008. 134p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho tem como objetivo analisar a resposta sísmica do talude de um aterro (10,40m de altura e 76° de inclinação), reforçado com geossintéticos (09 camadas de reforço horizontal com 10 m de comprimento) localizada em zona de atividade sísmica, no Peru. Os aspectos investigados compreendem o estudo da estabilidade de taludes sob condição estática, a resposta dinâmica da estrutura, a influência das condições de contorno, do tipo de amortecimento do solo e do ângulo de atrito do solo que forma o aterro aterro. As análises dinâmicas foram realizadas utilizando o programa computacional FLAC (ITASCA, 2005), com representação dos reforcos geossintéticos como elementos de cabo. O comportamento mecânico do material de rejeito foi simulado através do modelo elastoplástico de Mohr-Coulomb, considerando tanto o amortecimento de Rayleigh (dependente da freqüência), quanto o amortecimento histerético (dependente da deformação cisalhante do solo), com o objetivo de verificar os efeitos na resposta dinâmica do aterro e na distribuição das cargas máximas nos reforços. Um melhor entendimento de comportamento de taludes reforçados, principalmente sob ação de carregamentos sísmicos, é essencial para um adequado projeto de engenharia, tanto em termos técnicos quanto econômicos, em diversos países andinos da América do Sul.

Palavras-chave

Geossintéticos, análise numérica, aterro, solo reforçado, análise dinâmica.

Abstract

Maldonado, Esteban Quispe. Romanel, Celso (advisor). **Dynamic Analysis of a Geosynthetic Reinforced Embankment.** Rio de Janeiro, 2008. 134p. M.Sc. Thesis – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

The main objective of this research is to investigate the seismic response of a soil slope reinforced with geosynthetics, located in an active seismic region of Peru. The 10.40m high slope was reinforced with 9 horizontal layers of geosynthetics 10m long. The aspects studied in this work are related to the slope static stability, the dynamic response of the embankment under seismic excitation, the effects of the boundary conditions and the different types of mechanical the influence of the friction angle of the soil that forms the damping. embankment. The seismic analysis was carried out with the computational program FLAC, where the reinforcement layers were represented by means of cable elements. The soil mechanical behavior was simulated through the Mohr-Coulomb elastoplastic constitutive model, considering both the frequencydependent Rayleigh damping and the hysteretic damping (dependent on the soil shear deformation) with the objective to understand the influence of all these variables on the dynamic response of the structure and on the distribution of traction forces along the reinforcements. A good knowledge about the mechanical behavior of soil reinforced structures is essential for an efficient engineering design, under the technical and economical points of view, mainly in the Andean countries of South America.

Keywords

Geosynthetics, numerical analysis, embankment, reinforced soil, dynamic analysis.

Sumário

1. Introdução	19
1.1. Motivação e objetivos	19
1.2. Estrutura da dissertação	20
2. Revisão Bibliográfica	21
2.1. Introdução	21
2.2. Tectônica de placas	21
2.2.1. Deriva dos continentes	21
2.2.2. Sismicidade no Peru	25
2.3. Propagação de ondas planas de tensão	26
2.4. Solos reforçados com geossintéticos	29
2.4.1. Geossintéticos	31
2.4.1.1. Geotêxteis	31
2.4.1.2. Geogrelhas	33
2.4.2. Desempenho de solos reforçados sob carregamentos sísmicos	33
2.4.3. Mecanismos de ruptura em solos reforçados	36
2.5. Estabilidade de estruturas de contenção com solos reforçados	38
2.5.1. Estabilidade externa	38
2.5.2. Estabilidade interna	38
2.5.3. Análise estática de taludes de solo reforçado	40
2.5.4. Análise dinâmica de taludes de solo reforçado	42
2.6 Modelo linear equivalente	45
2.6.1. Estimativa de G _{max}	47
2.6.2. Curva de redução do módulo cisalhante	49
2.6.3. Razão de amortecimento	50
3. Modelagem numérica com programa FLAC	53
3.1. Descrição geral do programa FLAC	53
3.2. Modelagem do aterro	56
3.3. Modelagem do reforço	57
3.3.1. Comportamento axial	57
3.3.2. Comportamento cisalhante na interface solo-reforço	58

3.3.3. Propriedades do reforço	60
3.4. Aspectos da modelagem dinâmica	60
3.4.1. Contornos silenciosos	60
3.4.2. Contornos de campo livre	62
3.4.3. Transmissão de ondas	64
3.4.4. Filtragem do registro sísmico	64
3.4.5. Correção da linha base	65
3.4.6. Carregamento dinâmico	66
3.4.7. Amortecimento mecânico	68
3.4.7.1. Amortecimento de Rayleigh	68
3.4.7.2. Amortecimento histerético	71
3.4.7.3. Amortecimento local	73
4. Estabilidade estática do aterro reforçado	75
4.1. Introdução	75
4.2. Propriedades dos materiais	75
4.2.1. Propriedades do solo	75
4.2.2. Propriedades do reforço e interface	76
4.3. Discretização	77
4.4. Estabilidade estática do aterro	79
4.5. Deslocamentos laterais e forças nos reforços	81
5. Análise dinâmica do aterro reforçado	84
5.1. Sismo de projeto	84
5.2. Perfil do solo	86
5.3. Análise 1D com o programa SHAKE	89
5.4. Análise 1D com o programa FLAC e amortecimento histerético	90
5.5. Modelagem dinâmica do aterro reforçado com FLAC	93
5.5.1. Propriedades dos solos e reforços	93
5.5.2. Malha, condições de contorno, tamanho de zonas	93
5.5.3. Filtragem	95
5.5.4. Correção da linha base	96
5.5.5. Carregamento dinâmico	99
5.5.6. Freqüência fundamental do sistema	101
5.6. Resultados do análise dinâmica do aterro reforçado	103
5.6.1. Influência dos contornos	103
5.6.2. Influência de amortecimento mecânico	107

5.6.2.1. Amortecimento de Rayleigh	107
5.6.2.2. Amortecimento histerético	107
5.6.2.3. Amortecimento local	111
5.7. Comparações dos resultados	112
5.8. Influência do ângulo de atrito no amortecimento histerético	115
6. Conclusões e sugestões	117
Referências bibliográficas	120
Anexos	127

Lista de figuras

Figura 2.1 - Teoria da deriva dos continentes segundo Taylor (1910), Wegener
(1915) 23
Figura 2.2 – Placas tectônicas principais (USGS, Washington, 2001). 24
Figura 2.3 – Elementos característicos de um terremoto. 24
Figura 2.4 - Esquema de zona subducção no Peru, movimentos de placas e
distribuição de sismos (H.Talavera, IGP,1993). 25
Figura 2.5 – Deformações produzidas por ondas P (apud Kramer, 1996) 27
Figura 2.6 – Deformações produzidas por ondas SV (apud Kramer,1996). 27
Figura 2.7 – Deformações causadas por ondas superficiais: (a) ondas Rayleigh;
(b) ondas de Love (apud Kramer, 1996). 28
Figura 2.8 – Relação entre C_R , Cs, e Cp em função do coeficiente de Poisson
(apud Richard & Woods 1970). 28
Figura 2.9 - Ondas sísmicas registradas a 10.000 km do epicentro: a) sismo de
foco profundo; b) sismo de foco superficial (apud Sauter, 1989). 29
Figura 2.10 – Aterro reforçado de 35m de altura na cidade de Taichung, Taiwan.
30
Figura 2.11 - Sistema de muro de contenção reforçado usando geossintéticos.
31
Figura 2.12 - Arranjo estrutural de geotêxteis.32
Figura 2.13 - Exemplos de geogrelhas.33
Figura 2.14 - Fissuração atrás dos reforços de comprimento curto, no topo do
muro Valencia (EUA), após terremoto de Northridge, em 1994 (Bathurst e
Cai, 1995). 35
Figura 2.15 - Ruptura de paramento de blocos de concreto de muro reforçado
com geossintéticos após terremoto Chi - Chi, de magnitude 7.3, em Tai -
Chung (Taiwan). 35
Figura 2.16 - Sistema de instrumentação com acelerômetros, potenciômetros e
condição da face do modelo construído por Perez (1999). 36
Figura 2.17 - Mecanismo de reforço de estruturas de contenção em solos
reforçados (apud Huasmann, 1990). 37
Figura 2.18 - Tensões principais em solos reforçados (apud Hausmann, 1990). 38
Figura 2.19 - Modos de ruptura de estruturas em solo reforçado (apud Lee,
2000). 39

Figura 2.20 - Zonas ativa e resistente (Ehrlich e Mitchell, 1994). 40 Figura 2.21 - Seção transversal da barragem de Lower San Fernando antes e após o sismo de 1971. 43 Figura 2.22 - Procedimento de dupla integração no tempo no método de 45 Newmark (Smith, 1995). Figura 2.23 - Comportamento cíclico típico dos solos (Kramer, 1996): a) Relação tensão-deformação cisalhante para o primeiro ciclo de carregamento. b) Variação da rigidez em função do nível de deformação por cisalhamento 47 Figura 2.24 - Variação do módulo de cisalhamento K_{2max} para areias com diferentes densidades relativas - Seed e Idriss (1970). 48 Figura 2.25 - Faixa de variação de G/G_{max} com a deformação cisalhante para areias (Seed e Idriss, 1970). 49 Figura 2.26 - Faixa de variação de G/G_{max} com a deformação cisalhante para pedregulhos (Seed e Idriss, 1970). 49 Figura 2.27 - Efeito do índice de plasticidade na curva de redução do módulo de cisalhamento de solos coesivos (Vucetic e Dobry, 1991). 50 Figura 2.28 - Variação da razão de amortecimento para areias (Seed e Idriss, 1970). 51 Figura 2.29 - Comparação da variação da razão de amortecimento para solos 51 com pedregulho e areias (Seed et al., 1986). Figura 2.30 - Efeito do índice de plasticidade nas curvas de variação da razão de amortecimento vs deformação cisalhante para solos coesivos (Vucetic e Dobry, 1991). 52 Figura 3.1 - Exemplo de modelagem no programa FLAC. 53 Figura 3.2 - Comportamento do material para elementos de cabo. 58 Figura 3.3 - Comportamento do material de interface. 59 Figura 3.4 - Modelo para análise sísmica de uma estrutura de superfície e com condição de contorno em campo livre. 63 Figura 3.5 - Processo de correção da linha base. 66 Figura 3.6 - Condições de contorno e carregamento dinâmico. 67 Figura 3.7 - Variação da razão de amortecimento crítica normalizada em relação 70 à freqüência angular. Figura 3.8 - Limite superior da curva de redução do modelo de cisalhamento para areias proposta por Seed & Idriss(1970). 71

Figura 3.9 - Curvas de degradação de G no modelo linear equivalente implementado nos programas computacionais SHAKE e FLAC v.5. 72

Figura 3.10 - Curvas de aumento da razão crítica de amortecimento no mode	əlo
linear equivalente implementado nos programas computacionais SHAKE	e
FLAC v.5	73
Figura 4.1 - Instalação de geogrelha e colocação de material de rejeito n	na
construção do aterro reforçado (Peru).	78
Figura 4.2 - Construção da etapa final do aterro reforçado com geossintéticos	na
barragem de rejeitos III da mina San Rafael (Peru).	78
Figura 4.3 - Discretização adotada para análise estática.	79
Figura 4.4 - Análise de estabilidade do aterro sem reforço - contornos de máxin	na
velocidade de deformação cisalhante e vetores de velocidade.	30
Figura 4.5 - Análise de estabilidade do aterro com reforço - contornos de máxin	na
velocidade de deformação cisalhante.	80
Figura 4.6 - Variação de fator de segurança com a altura do talude com e se	эm
reforço. 8	81
Figura 4.7 - (a) Deslocamentos horizontais na face do talude. (b) Tração máxin	na
nos reforços de geossintético.	82
Figura 4.8 - Equilíbrio local de uma camada de reforço.	83
Figura 4.9 - Ábaco para projeto de taludes reforçados (R.I.Woods,1993).	83
Figura 5.1 - Curvas de isoacelerações para 10% de excedência em 100 and	os
(Alva e Castillo, 1993), Peru.	85
Figura 5.2 - Registro de acelerações do terremoto de Moquegua de 23/06/200)3.
8	86
Figura 5.3 - Registro normalizado das acelerações do terremoto de Moquego	ua
de 23/06/2003 em relação à aceleração máxima de 0.19g no embasamen	٦to
rochoso. 8	86
Figura 5.4 - Material do rejeito: curvas de variação do módulo G e da razão o	de
amortecimento para areias(Seed e Idriss, 1970; Idriss, 1990).	87
Figura 5.5 - Material de botafora: curvas médias de variação do módulo G e o	da
razão de amortecimento para areias e pedregulhos.	88
Figura 5.6 - Amplificação da aceleração na profundidade de 12m (SHAKE).	89
Figura 5.7 - Relação da tensão versus deformação cisalhante do material o	da
camada 3 do aterro (SHAKE).	90
Figura 5.8 - Modelo unidimensional utilizado no FLAC.	91
Figura 5.9 - Resposta das acelerações na profundidade de 12m (FLAC).	92
Figura 5.10 - Tensão cisalhante versus deformação cisalhante na camada o	de
número 3, a 5m de profundidade do topo do aterro (FLAC).	92
Figura 5.11 - Malha do modelo adotado no FLAC.	94

Figura 5.12 - Modelo de aterro reforçado com materiais e condições de contorno indicados (FLAC). 95 Figura 5.13 - História de aceleração horizontal na fase intensa do sismo. 97 Figura 5.14 - Espectro de potência do registro de acelerações da figura 5.13 97 (FLAC). Figura 5.15 - História de aceleração horizontal na fase intensa do sismo considerando filtro em 7.3 Hz. 98 Figura 5.16 - Espectro de potência do registro de acelerações da figura 5.15 considerando filtro em 7.3 Hz. 98 Figura 5.17 - História dos deslocamentos com linha base corrigida e nãocorrigida (FLAC). 99 Figura 5.18 - História das velocidades com linha base corrigida e não-corrigida 99 (FLAC). Figura 5.19 - Ajuste necessário para concordar os registros de ondas de velocidade e de ondas de tensão cisalhante: (a) na base do modelo, em função dos deslocamentos horizontais; (b) na base do modelo, em função das velocidades horizontais. 101 Figura 5.20 - História das velocidades horizontais (m/s) não-amortecidas no ponto nodal (15,15) usando o FLAC. 102 Figura 5.21 - Espectro de potência das velocidades horizontais não-amortecidas 102 no ponto nodal (15,15). Freqüência fundamental =1.048 Hz. Figura 5.22 - Influência da introdução de contornos de campo livre: (a) na distribuição dos deslocamentos horizontais; (b) na distribuição de forças de tração nos reforços. 104 Figura 5.23 - Influência da consideração de contornos de campo livre no registro de velocidades do nó (31,29), no topo do talude. 104 Figura 5.24 - Contornos de deslocamentos horizontais ao final da excitação sísmica. Análise não-amortecida. 105 Figura 5.25 - Contorno de máximos incrementos de deformação cisalhante ao final da excitação sísmica. Análise não-amortecida. 106 Figura 5.26 - Distribuição de esforços de tração nos reforços do aterro ao final da excitação sísmica. Análise não-amortecida. 106 Figura 5.27 - Contornos de deslocamentos horizontais ao final da excitação sísmica. Amortecimento de Rayleigh. 107 Figura 5.28 - Contornos de incrementos máximos de deformação cisalhante ao final da excitação sísmica. Amortecimento de Rayleigh. 108

- Figura 5.29 Forças máximas de tração nas camadas de reforço do aterro ao final da excitação sísmica. Amortecimento de Rayleigh. 108
- Figura 5.30 Contornos de deslocamentos horizontais ao final da excitação sísmica. Amortecimento histerético e de Rayleigh (0.5%). 109
- Figura 5.31 Contornos de incrementos máximos de deformação cisalhante, ao final da excitação sísmica. Amortecimento histerético e de Rayleigh (0.5%). 110
- Figura 5.32 Forças máximas de tração nas camadas de reforço ao final da excitação sísmica. Amortecimento histerético e de Rayleigh (0.5%) 116
- Figura 5.33 Contornos de deslocamentos horizontais ao final da excitação sísmica. Amortecimento local. 111
- Figura 5.34 Contornos de incrementos máximos de deformação cisalhante, ao final da excitação sísmica. Amortecimento local. 112
- Figura 5.35 Forças máximas de tração nas camadas de reforço ao final da excitação sísmica. Amortecimento local. 112
- Figura 5.36 Influência do amortecimento mecânico no deslocamento horizontal da face do aterro reforçado. 113
- Figura 5.37 Influência do amortecimento mecânico na força de tração máxima no aterro reforçado. 114
- Figura 5.38 História dos deslocamentos no topo do aterro reforçado (nó 31,29). 114
- Figura 5.39 Influência do ângulo de atrito nos deslocamentos horizontais da face do talude do aterro reforçado. 115
- Figura 5.40 Influência de ângulo de atrito nas forças de tração máxima nos reforços do aterro. 116

Lista de tabelas

Tabela 2.1 – Tipos de geossintético e principais funções (Koerner, 1998)	31
Tabela 2.2 - Resumo do desempenho de estruturas de solo reforçado solo) ação
sísmica (Nova – Roessing, 1999)	34
Tabela 2.3 - Fator de segurança mínimo em talude de solo reforçado (H	oltz et
al., 1997)	41
Tabela 2.4 – Estimativa de K _{2,max} (Seed e Idriss, 1970)	48
Tabela 3.1 - Modelos constitutivos disponíveis no programa FLAC v.5	55
Tabela 3.2 – Valores típicos da razão de amortecimento crítico	70
Tabela 4.1 - Propriedades da fundação e solo de aterro	76
Tabela 4.2 – Características do rejeito do aterro	76
Tabela 5.1 - Valores representativos de critérios de projeto conside	rando
movimentos sísmicos	84
Tabela 5.2 – Perfil de depósito do solo e respectivas propriedades	87
Tabela 5.3 - Propriedades do solo de fundação e aterro	93
Tabela 5.4 – Propriedades das geogrelhas	93
Tabela 5.5 – Cálculo de tamanho máximo da zona (elemento)	95

Lista de símbolos

A	Área da seção transversal do reforço
A _{laço}	Àrea do laço de histerese
В	Largura do aterro
C_p	Velocidade de onda primária
C_s	Velocidade de onda secundária
C_R	Velocidade de onda Rayleigh
С	Coesão
C_{comp}	Coesão do material compósito
D_r	Densidade relativa
E	Módulo de Young
FS	Fator de segurança
Fs	Força cisalhante desenvolvida ao longo da interface
	reforço-solo
Fi	Força nodal
$Fij(\omega)$	Função de transferencia entre camadas i e j
f	Freqüência
G	Módulo de cisalhamento
$G_{ m max}$	Módulo de cisalhamento máximo
$G_{ m sec}$	Módulo de cisalhamento secante
G _{sec} H	Módulo de cisalhamento secante Altura de aterro
G _{sec} H J	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço
G _{sec} H J K	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço Módulo de deformação volumétrica
$G_{ m sec}$ H J K K_o	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço Módulo de deformação volumétrica Coeficiente de empuxo
$G_{ m sec}$ H J K K_o K_{bond}	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço Módulo de deformação volumétrica Coeficiente de empuxo Rigidez cisalhante da interface
$G_{ m sec}$ H J K K_o K_{bond} k_s	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço Módulo de deformação volumétrica Coeficiente de empuxo Rigidez cisalhante da interface Rigidez cisalhante
G_{sec} H J K K_o K_{bond} k_s k_n	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço Módulo de deformação volumétrica Coeficiente de empuxo Rigidez cisalhante da interface Rigidez normal
G_{sec} H J K K_o K_{bond} k_s k_n L	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço Módulo de deformação volumétrica Coeficiente de empuxo Rigidez cisalhante da interface Rigidez normal Comprimento da zona reforçada
G_{sec} H J K K_o K_{bond} k_s k_n L l_o	Módulo de cisalhamento secante Altura de aterro Rigidez do reforço Módulo de deformação volumétrica Coeficiente de empuxo Rigidez cisalhante da interface Rigidez cisalhante Rigidez normal Comprimento da zona reforçada Comprimento inserido na zona resistente

Р	Poropressão
Pa	Pressão atmosférica
Py	Límite de escoamento
r _a	Raio do círculo a
S_h	Espaçamento horizontal
S_{v}	Espaçamento vertical
S_{bond}	Coesão da argamassa
$S_{friction}$	Ângulo de atrito da argamassa
$S^{(s)}$	Valor inicial da tensão
Т	Resistência ao cisalhamento do solo
tn	Tensão normal ao contorno
ts	Tensão cisalhante ao contorno
T_y	Resistência ao escoamento do solo
$T_{pullout}$	Resistência ao arrancamento do reforço
<i>u_c</i>	Deslocamento axial do cabo
u_m	Deslocamento axial do solo
$\mathcal{U}_{i}^{^{(b)}}$	Vetor de velocidade do nó "b"
<i>V</i> _n	Componente da velocidade normal ao contorno
\mathcal{V}_s	Componente da velocidade tangencial ao contorno
<i>v_x</i> , <i>v_y</i>	Componentes das velocidades nas direções x e y
V_x^m	Velocidade na direção x do nó do contorno na malha principal
V_y^m	Velocidade na direção y do nó do contorno na malha principal
V_x^{ff}	Velocidade na direção x do nó do contorno na malha de campo livre
V_y^{ff}	Velocidade na direção y do nó do contorno na malha de campo livre
W	Peso de solo
W _d	Energia dissipada no ciclo
W _s	Energia de deformação máxima
ω_{i}	Freqüência angular

$x^{(S)}, y^{(S)}$	Coordenada do nó inicial
$x^{(e)}, y^{(e)}$	Coordenada do nó final
ρ	Massa específica
ξ_i	Razão de amortecimento crítico
σ_{m}	Tensão normal efetiva media
γ	Deformação cisalhante
ϕ_{sg}	Ângulo de atrito na interface solo-geossinténtico.
β	Ângulo do talude
ΔF	Incremento de força axial
$\sigma^{\scriptscriptstyle f\!f}_{\scriptscriptstyle xx}$	Tensão horizontal média em nó do contorno da malha de campo livre
$\sigma^{\scriptscriptstyle f\!f}_{\scriptscriptstyle W}$	Tensão cisalhante média em nó do contorno da malha
<i>xy</i>	de campo livre
$\sigma_{_n}$	Tensão normal aplicada
σ_{s}	Tensão cisalhante aplicada
α, β	Coeficientes de Rayleigh
ε	Deformação axial
λ	Comprimento de onda
$lpha_{_L}$	Coeficiente de amortecimento local
ϕ	Ângulo de atrito
. (b)	Vetor de velocidade no nó "b"
ψ	Ângulo de dilatância
ΔS_{y}	Tamanho da zona vertical média nos nós do contorno
γ	Peso específico
σ_{zz}	Tensão fora-do-plano
Δl	Comprimento do elemento na direção de propagação
	da onda
τ	Tensão cisalhante
υ	Coeficiente de Poisson